Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Содержание

Физ-мат класс

Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Треугольники и их элементы

Треугольник — это замкнутая ломаная, состоящая из трех звеньев, и часть плоскости, ею ограниченная (рис. 1).

Обозначения:

— длины сторон треугольника соответственно;

— полупериметр треугольника ;

— величины углов треугольника соответственно;

— длины медиан треугольника соответственно;

— длины высот треугольника соответственно;

— длины биссектрис треугольника соответственно;

— радиус окружности, описанной около треугольника ;

— радиус окружности, вписанной в треугольник ;

— площадь треугольника .

Элементы треугольника

Сторона треугольника — отрезок, соединяющий две его вершины.

Неравенство треугольника — в любом треугольнике сумма длин двух сторон больше длины третьей стороны:, , .

Пусть — наибольшая из трех сторон треугольника, тога если , то треугольник остроугольный; если , то треугольник прямоугольный; если , то треугольник тупоугольный.

Угол — часть плоскости, ограниченная двумя лучами, выходящими из вершины.

Теорема. Сумма углов треугольника равна : .

Следствие: В треугольнике не может быть более одного тупого или прямого угла.

Внешний угол — угол, смежный с каким-нибудь углом треугольника (рис. 2).

Теорема. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Биссектриса угла — прямая, делящая угол на две равные части.

Биссектриса угла треугольника — наибольший отрезок биссектрисы угла, лежащий внутри треугольника.

Теорема. Если точка лежит на биссектрисе треугольника, то она равноудалена от сторон угла.

Верно и обратное утверждение: если точка равноудалена от сторон угла, то она лежит на биссектрисе угла этого треугольника.

Биссектрисы треугольника пересекаются в одной точке, называемой инцентром, и являющейся центром вписанной в этот треугольник окружности (рис.3). Радиус вписанной в треугольник окружности может быть найден по формулам: , .

Медиана — это отрезок, соединяющий какую-либо вершину треугольника с серединой противоположной стороны.

Теорема. Медианы треугольника пересекаются в одной точке, называемой центроидом треугольника, и являющейся центром тяжести этого треугольника.

Высота — это перпендикуляр, опущенный из вершины треугольника на противоположную сторону или ее продолжение.

Высоты треугольника пересекаются в одной точке, называемой ортоцентром. Длины высот находятся по следующим формулам: , .

Биссектриса угла треугольника лежит между медианой и высотой, проведенной из той же вершины, что и сама биссектриса (рис. 4).

Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.

Теорема. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине: [Unparseable or potentially dangerous latex formula. Error 3 ], (рис. 5).

Серединный перпендикуляр к отрезку — прямая, перпендикулярная к этому отрезку и проходящая через его середину.

Теорема. Если точка лежит на серединном перпендикуляре к отрезку, то она равноудалена от его концов.

Верно и обратное утверждение: если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к нему.

Все три серединных перпендикуляра пересекаются в одной точке, являющейся центром окружности, описанной вокруг треугольника (рис. 6).

Если треугольник остроугольный, центр описанной окружности лежит строго внутри треугольника. Если треугольник прямоугольный, центр описанной окружности лежит на середине гипотенузы. Если треугольник тупоугольный, центр описанной окружности лежит вне треугольника.

Радиус описанной окружности может быть найден по формулам: , .

Три замечательные точки треугольника: центр описанной окружности, точка пересечения медиан и точка пересечения высот лежат на одной прямой. Эта прямая называется прямой Эйлера.

Теорема синусов. Отношение длины стороны треугольника к синусу противолежащего угла для данного треугольника есть величина постоянная и равная диаметру описанной около треугольника окружности:

Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: .

Теорема тангенсов. Разность двух сторон треугольника относится к их сумме, как тангенс полуразности противолежащих углов к тангенсу их полусуммы: .

Признаки подобия треугольников

Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где — коэффициент подобия (рис. 7).

I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Следствие: Площади подобных треугольников относятся как квадрат коэффициента подобия: .

Признаки равенства треугольников

Равными называют треугольники, у которых соответствующие стороны равны.

Теорема (первый признак равенства треугольников).

Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.

Теорема (второй признак равенства треугольников).

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема (третий признак равенства треугольников).

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Медиана треугольника

Медиана — отрезок, соединяющий вершину треугольника с серединой ее противоположной стороны.

Теоремы:

  • Медиана, проведенная из вершины треугольника, делит его на два равновеликих: (рис. 8).
  • Медианы пересекаются в одной точке, называемой центроидом треугольника, и точкой пересечения делятся в отношении 2:1 считая от вершины (рис. 9).
  • Отрезки медиан, соединяющие вершины с центроидом, делят треугольник на три равновеликих: (рис. 10).
  • Пересекаясь, медианы делят треугольник на шесть равновеликих: (рис. 11).
  • Длина медианы, проведенной к стороне c равна: (рис. 12).

Биссектриса треугольника

Биссектрисой угла называется прямая, делящая угол на две равные части.

Биссектрисой угла треугольника называется наибольший отрезок биссектрисы угла, лежащий внутри треугольника.

Теоремы:

  • Биссектриса — множество точек, равноудаленных от сторон угла.
  • Биссектриса делит сторону, к которой она проведена на отрезки, пропорциональные боковым сторонам: (рис. 13).

Примечание. В обозначениях на рисунке имеем: , .

  • Точкой пересечения биссектрисы делятся в отношении суммы сторон треугольника, образующих угол, в котором проведена биссектриса, к третьей стороне: (рис. 13).
  • Длина биссектрисы, делящей угол пополам, равна удвоенному произведению сторон, деленному на их сумму и умноженному на косинус половины угла между ними: (рис. 13).
  • Длина биссектрисы равна: (рис. 13).
  • Длина биссектрисы внешнего угла треугольника равна: , при (рис. 14).
  • Биссектрисы треугольника пересекаются в одной точке, являющейся центром вписанной в треугольник окружности. Радиус вписанной окружности может быть найден по формулам: , .

Равносторонний треугольник

Равносторонний треугольник — треугольник, у которого все стороны равны: .

Теоремы:

  • Все углы равностороннего треугольника равны и равны : .
  • Медианы, биссектрисы и высоты равностороннего треугольника совпадают и равны : .
  • Радиус описанной вокруг равностороннего треугольника окружности: .
  • Радиус вписанной в равносторонний треугольник окружности: .
  • Площадь равностороннего треугольника: .

Равнобедренный треугольник и его свойства

Равнобедренный треугольник — треугольник, у которого две стороны равны (рис. 15). Эти равные стороны называются боковыми сторонами, а третья сторона — основанием треугольника.

Теоремы:

  • Углы при основании равны: .
  • Медиана, проведенная к основанию, является биссектрисой и высотой: .
  • Площадь равнобедренного треугольника: .

Прямоугольный треугольник и его свойства

Теорема Пифагора: .

Решение прямоугольного треугольника:

;

;

.

Теоремы:

  • Высота в прямоугольном треугольнике, проведенная из вершины прямого угла, делит его на два подобных и подобных исходному треугольнику. Для любых сходственных элементов (медиана, биссектриса, радиусы вписанной и описанной окружностей и т. п.) исходного и полученных треугольников справедливо соотношение (рис. 17).
  • Высота, проведенная из вершины прямого угла, делит гипотенузу на отрезки: (рис. 16). Эти отрезки являются проекциями катетов на гипотенузу.
  • Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: (рис. 16).
  • Длина высоты, проведенной из вершины прямого угла, равна отношению произведения длин катетов и гипотенузы: .
  • Медиана, проведенная из вершины прямого угла, равна половине гипотенузы. Ее основание является центром описанной около прямоугольного треугольника окружности (рис. 18). Радиус описанной окружности равен этой медиане и равен половине гипотенузы: .
  • Радиус вписанной окружности равен половине суммы катетов, уменьшенной на гипотенузы: .
  • Площадь прямоугольного треугольника равна половине произведения катетов: или вычисляется по любой из следующих формул: , , , , , , .

Теоремы о площади треугольника

  • Площадь треугольника равна: .
  • Площадь треугольника равна: .
  • Формула Герона: .
  • Площадь треугольника равна: .
  • Площадь треугольника равна: .
  • Площадь треугольника равна: .
  • Площадь треугольника равна: .
  • Площадь треугольника равна: , где , ,  — радиусы вневписанных окружностей.
  • Если в треугольнике одну из сторон изменить в раз, а другую в раз, оставив без изменения угол между ними, то площадь получившегося треугольника измениться в раз.
  • Отношение площадей двух треугольников, у которых одна вершина общая, а другие вершины расположены на двух прямых, проходящих через , равно отношению произведений двух сторон каждого треугольника, содержащих вершину .

Теоремы об отрезках в треугольнике

Теорема Чевы. Пусть на сторонах треугольника выбраны точки, [Unparseable or potentially dangerous latex formula. Error 3 ], [Unparseable or potentially dangerous latex formula. Error 3 ], (рис. 19).

Тогда отрезки [Unparseable or potentially dangerous latex formula. Error 3 ] пресекаются в одной точке тогда и только тогда, когда выполняется равенство: [Unparseable or potentially dangerous latex formula.

Error 3 ].

Обобщенная теорема Чевы. Пусть прямые проходят через вершины треугольника и пересекают прямые в точках [Unparseable or potentially dangerous latex formula. Error 3 ] соответственно. Тогда прямые пересекаются в одной точке или параллельны тогда и только тогда, когда имеет место равенство: [Unparseable or potentially dangerous latex formula. Error 3 ] (рис. 20).

Теорема Менелая. Пусть дан треугольник и точки [Unparseable or potentially dangerous latex formula. Error 3 ] принадлежат соответственно прямым (рис. 21). Точки [Unparseable or potentially dangerous latex formula. Error 3 ] лежат на одной прямой тогда и только тогда, когда выполняется равенство: [Unparseable or potentially dangerous latex formula. Error 3 ].

Источник: http://www.fmclass.ru/math.php?id=484813042ba4d

Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника – формулы вычисления, прямоугольный треугольник, равнобедренный треугольник, высота треугольника

Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон
Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. / / Плоские фигуры.

Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. / / Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника – формулы вычисления, прямоугольный треугольник, равнобедренный треугольник, высота треугольника.

Свойства треугольников.Меню

Треугольник -это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – его сторонами.Для инженера это еще и единственная “жесткая” плоская фигура на свете.Раздел математики, посвященный изучению закономерностей треугольников — тригонометрия.Сумма всех углов в треугольнике равна 180°.

Обозначения в треугольнике.

Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α, β, γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).

Виды треугольников:

(по величине углов)

Остроугольный треугольник – это треугольник, в котором все три угла острые, т.е. меньше 90°.
Прямоугольный треугольник – это треугольник, содержащий прямой угол.Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).
Тупоугольный треугольник – это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.(по числу равных сторон)
(по соотношению сторон)
Равносторонний (правильный) треугольник – это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).
Равнобедренный тругольник – это треугольник, у которого два угла и две стороны равны.
Разносторонний треугольник – это треугольник, в котором все углы, а значит и все стороны попарно различны.(Разносторонний треугольник может быть остроугольным, прямоугольным и тупоугольным).
Рассмотрим рис. ниже.Углы α, β, γ нызываются внутренними углами треугольника.Угол Θ – называется внешним углом треугольника, он равен сумме двух противолежащих ему внутренних углов, т.е. Θ= β+γ(а+с+b) – периметр треугольника.Угол α, называется смежным по отношению к углу Θ. ( α+ Θ)=180° (развернутый угол)

Основные свойства треугольников. В любом треугольнике:

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)
  3. Сумма углов треугольника равна 180 °  (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °).
  4. Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
    •  a < b + c,
    •  a > b – c;
    •  b < a + c,
    •  b > a – c;
    •  c < a + b,
    •  c > a – b.
Два треугольника называются конгруэнтными (равными), если они равны по всем параметрам, т.е. три угла и три стороны одного треугольника равны трем углам и трем сторонам другого треугольника.

Признаки равенства треугольников:

1. Три стороны одного треугольника равны трем сторонам другого треугольника (по трем сторонам). 2. Две стороны одного треугольника равны двум сторонам другого треугольника и углы между этими сторонами также равны (по двум сторонам и углу между ними). 3. Три угла одного треугольника равны трем углам другого треугольника (по трем углам).4. Два угла одного треугольника равны двум углам другого треугольника, и любая сторона первого треугольника равна соответствующей стороне другого треугольника.

Признаки равенства прямоугольных треугольников:

Два прямоугольных треугольника равны, если у них соответственно равны: 1. Гипотенуза и острый угол. 2. Катет и противолежащий угол. 3. Катет и прилежащий угол. 4. Два катета.5. Гипотенуза и катет.

Подобные треугольники.

Два треугольника являются подобными, если углы одного треугольника равны, углам тругого треугольника, а стороны подобны, т.е.(р/а)=(q/b)=(r/c).

Признаки подобия треугольников:

  1. Два угла одного треугольника равны двум углам другого треугольника.
  2. Две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны.
  3. Три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

Свойства подобных треугольников.

  1. Отношение площадей подобных треугольников равно квадрату коэффициента подобия [(р/а)=(q/b)=(r/c)=коэффициент подобия].
  2. Отношение периметров и длин либо биссектрис, либо медиан, либо высот, либо серединных перпендикуляров равно коэффициенту подобия. т.е. в подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Подобие в прямоугольных треугольниках.

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:1. Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому (Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось.) проекций катетов на гипотенузу.2. Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Теорема Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. , т.е. BC2=AB2+AC2 см. рис. выше.

Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности:

Теорема косинусов.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника AD, CF, BE пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
  1. Медиана разбивает треугольник на два треугольника одинаковой площади.
  2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
  3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
  4. Из двух медиан треугольника большая медиана проведена к его меньшей стороне.

Биссектриса

Биссектриса угла треугольника— это луч, который исходит из вершины треугольника, проходит между его сторонами и делит данный угол пополам. Три биссектрисы треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

  1. Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам например, на  рис. выше  AE:CE = AB:BC
  2. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
  3. Биссектриса угла — это геометрическое место точек, равноудаленных от сторон этого угла.

Высота треугольника

Высота треугольника – это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника.Ортоцентр остроугольного треугольника (точка O на рис. выше) расположен внутри треугольника, а ортоцентр тупоугольного треугольника – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

  1. Прямые, содержащие высоты треугольника пересекаются в одной точке (ортоцентре треугольника).
  2. Отрезок, соединяющий основания высот остроугольного треугольника, отсекает от данного треугольника подобный ему с коэффициентом подобия, равным косинусу общего угла этих треугольников.
  3. Из двух высот треугольника большая высота проведена к его меньшей стороне.
  4. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
  5. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
В подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Срединный перпендикуляр

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС(KO, MO, NO, рис.выше) пересекаются в одной точке О, являющейся центром описанного круга( точки K, M, N – середины сторон треугольника ABC).В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

1.Произвольный треугольник – формулы площади

a, b, c — стороны; α — угол между сторонами a и b; p=(a+b+c) / 2— полупериметр; R — радиус описанной окружности; r — радиус вписанной окружности; S — площадь; ha — высота, проведенная к стороне a.

  1. S=(1/2)*(a* ha) – по стороне и высоте.
  2. S=(1/2) *(a*b*sinα) по двум сторонам и синусу угла между ними
  3. – по длинам сторон – формула площади Герона
  4. S=p*r – через периметр и радиус вписанной окружности
  5. S=(a*b*c) / (4R) – через длины сторон и радиус описанной оружности
a, b — катеты; c — гипотенуза; hc — высота, проведенная к стороне c.1. S=(1/2)*a*b2. S=(1/2)*c*hc
S=(a2*√3)/4
– Синус α – это отношение AB/OB (отношение противолежащего катета к гипотенузе)- Косинус α – это отношение ОА/OB (отношение прилежащего катета к гипотенузе)- Тангенс α – это отношение AB/OA (отношение противолежащего катета к прилежащему)- Котангенс α – это отношение ОА/AB (отношение прилежащего катета к противолежащему)

Источник: https://tehtab.ru/Guide/GuideMathematics/PerimSqVolGradRad/SquaresOfPlainFigures/TrianglesProporties/

Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник — урок. Геометрия, 7 класс

Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Перпендикуляр от точки к прямой

Отрезок \(AC\) называется перпендикуляром, проведённым из точки \(A\) прямой \(a\), если прямые \(AC\) и \(a\) перпендикулярны.

Точка \(C\) называется основанием перпендикуляра.

От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один. 

  

Докажем, что от точки \(A\), не лежащей на прямой \(BC\), можно провести перпендикуляр к этой прямой.

Допустим, что дан угол ∡ABC.

Отложим от луча \(BC\) угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне \(BC\)).

Сторона \(BA\) совместится со стороной BA1.

При этом точка \(A\) наложится на некоторую точку A1.

Следовательно, совмещается угол ∡ACB с ∡A1CB.

Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.

Прямая AA1 перпендикулярна прямой \(BC\), а отрезок \(AC\) является перпендикуляром от точки \(A\) к прямой \(BC\).

Если допустить, что через точку \(A\) можно провести ещё один перпендикуляр к прямой \(BC\), то он бы находился на прямой, пересекающейся с AA1. Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.

Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.

Медианы, биссектрисы и высоты треугольника

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Поэтому для построения медианы необходимо выполнить следующие действия:1. найти середину стороны;

2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.

У треугольника три стороны, следовательно, можно построить три медианы.

Все медианы пересекаются в одной точке.

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Поэтому для построения биссектрисы необходимо выполнить следующие действия:
1.

построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);2.

найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.

У треугольника три угла и три биссектрисы.

Все биссектрисы пересекаются в одной точке.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Поэтому для построения высоты необходимо выполнить следующие действия:
1.

провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2.

из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90°) — это и будет высота.

Так же как медианы и биссектрисы, треугольник имеет три высоты.

Высоты треугольника пересекаются в одной точке.

Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются. 

Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.

Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.

Обрати внимание!

Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.

Равнобедренный треугольник

Если у треугольника две стороны равны, то такой треугольник называют равнобедренным.

Равные стороны называют боковыми, а третью сторону — основанием.

\(AB = BC\) — боковые стороны , \(AC\) — основание.

Если у треугольника все три стороны равны, то такой треугольник является равносторонним.

Равнобедренный треугольник имеет некоторые свойства, которые не имеют треугольники с разными сторонами.

1. В равнобедренном треугольнике углы при основании равны.

2. В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

3. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.

4. В равнобедренном треугольнике высота, проведённая к основанию, является биссектрисой и медианой.

Первое и второе свойство можно доказать, если докажем равенство двух треугольников, которые образуются, когда к углу напротив основания провести биссектрису \(BD\).

Рассмотрим равнобедренный треугольник \(ABC\) с основанием \(AC\) и докажем, что ΔABD=ΔCBD.

Пусть \(BD\) — биссектриса треугольника \(ABC\). ΔABD=ΔCBD по первому признаку равенства треугольников (\(AB = BC\) по условию, \(BD\) — общая сторона, ∡ABD=∡CBD, так как \(BD\) — биссектриса).

У равных треугольников равны все соответствующие элементы:

1. ∡A=∡C — доказано, что прилежащие основанию углы равны.

2. \(AD = DC\) — доказано, что биссектриса является медианой.

3. ∡ADB=∡CDB — так как смежные углы, сумма которых 180°, равны, то каждый из них равен 90°, то есть медиана является высотой.

Можно очень легко самостоятельно доказать и третье, и четвёртое свойства.

Источник: https://www.yaklass.ru/p/geometria/7-klass/treugolniki-9112/mediany-bissektrisy-i-vysoty-treugolnika-9481/re-56c524c8-9727-48db-9926-95988d203d40

Биссектриса треугольника: ее свойства и формула, как обозначается и какова длина

Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Биссектриса треугольника – распространенное геометрическое понятие, которое не вызывает особых затруднений в изучении. Владея знаниями о ее свойствах, с решением многих задач можно справиться без особого труда. Что такое биссектриса? Постараемся ознакомить читателя со всеми секретами этой математической прямой….

Содержимое

  • 1 Суть понятия
  • 2 Свойства
  • 3 Длина
  • 4 Частные случаи

Суть понятия

Наименование понятия пошло от использования слов на латыни, значение которых заключается «би» две, «сектио» разрезать. Они конкретно указывают на геометрический смысл понятия – разбивание пространства между лучами на две равные части.

Биссектриса треугольника – отрезок, который берет начало из вершины фигуры, а другой конец размещен на стороне, которая расположена напротив него, при этом делит пространство на две одинаковые части.

Многие педагоги для быстрого ассоциативного запоминания учащимися математических понятий пользуются разной терминологией, которая отображена в стихах или ассоциациях. Конечно, использовать такое определение рекомендуется для детей старшего возраста.

Как обозначается эта прямая? Здесь опираемся на правила обозначения отрезков или лучей. Если речь идет об обозначении биссектрисы угла треугольной фигуры, то обычно ее записывают как отрезок, концы которого являются вершиной и точкой пересечения с противоположной вершине стороной. Причем начало обозначения записывается именно из вершины.

Внимание! Сколько биссектрис имеет треугольник? Ответ очевиден: столько же, сколько вершин, – три.

Свойства

Кроме определения, в школьном учебнике можно найти не так уж много свойств данного геометрического понятия. Первое свойство биссектрисы треугольника, с которым знакомят школьников, – центр вписанной окружности, а второе, напрямую связанное с ним, – пропорциональность отрезков. Суть заключается в следующем:

  1. Какая бы ни была делящая прямая, на ней расположены точки, которые находятся на одинаковом расстоянии от сторон, которые составляют пространство между лучами.
  2. Для того чтобы вписать в треугольную фигуру окружность, необходимо определить точку, в которой будут пересекаться эти отрезки. Это и есть центральная точка окружности.
  3. Части стороны треугольной геометрической фигуры, на которые разбивает ее делящая прямая, находятся в пропорциональной зависимости от образующих угол сторон.

Постараемся привести в систему остальные особенности и представить дополнительные факты, которые помогут глубже познать достоинства этого геометрического понятия.

! Вычисление радиуса: как найти длину окружности зная диаметр

Длина

Одним из видов задач, которые вызывают затруднение у школьников, является нахождение длины биссектрисы угла треугольника. Первый вариант, в котором находится ее длина, содержит такие данные:

  • величина пространства между лучами, из вершины которого выходит данный отрезок,
  • длины сторон, которые образуют этот угол.

Для решения поставленной задачи используется формула, смысл которой заключается в нахождении отношения увеличенного в 2 раза произведения значений сторон, составляющих угол, на косинус его половины к сумме сторон.

Рассмотрим на определенном примере. Допустим, дана фигура АВС, в которой отрезок проведен из угла А и пересекает сторону ВС в точке К. Значение А обозначим Y. Исходя из этого, АК = (2*АВ*АС*cos(Y/2))/(АВ+АС).

! Первый признак равенства треугольников: доказательство

Второй вариант задачи, в котором определяется длина биссектрисы треугольника, содержит такие данные:

  • известны значения всех сторон фигуры.

При решении задачи такого типа первоначально определяем полупериметр. Для этого необходимо сложить значения всех сторон и разделить пополам: р=(АВ+ВС+АС)/2. Далее применяем вычислительную формулу, с помощью которой определялась длина данного отрезка в предыдущей задаче.

Необходимо только внести некоторые изменения в суть формулы в соответствии с новыми параметрами.

Итак, необходимо найти отношение увеличенного в два раза корня второй степени из произведения длин сторон, которые прилегают к вершине, на полупериметр и на разность полупериметра и длины противолежащей ему стороны к сумме сторон, составляющих угол. То есть АК=(2٦АВ*АС*р*(р-ВС))/(АВ+АС).

Внимание! Чтобы легче освоить материал, можно обратиться к имеющимся в Интернете шуточным сказкам, повествующим о приключениях этой прямой.

Частные случаи

Биссектриса прямоугольного треугольника имеет все общие свойства. Но следует отметить частный случай, который присущ только ей: при пересечении отрезков, основания которых являются вершинами острых углов прямоугольного треугольника, между лучами получается 45 град.

Биссектриса равнобедренного треугольника также имеет свои особенности:

  • Если основание этого отрезка – вершина, противолежащая основанию, то она является и высотой, и медианой.
  • Если отрезки проведены из вершин углов при основании, то их длины равны между собой.

! Чему равна и как найти площадь равностороннего треугольника

Урок геометрии, изучаем свойства биссектрисы

Свойства биссектрисы треугольника

Источник: https://tvercult.ru/nauka/chto-takoe-bissektrisa-treugolnika-svoystva-svyazannyie-s-otnosheniem-storon

Все, что нужно знать о треугольнике

Биссектриса угла треугольника определение. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим. 2012-05-04

» СТАТЬИ » ПЛАНИМЕТРИЯ » Все, что нужно знать о треугольнике

При решении геометрических  задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы  и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

Итак.

Площадь треугольника.

1. ,

здесь  – произвольная сторона треугольника,  – высота, опущенная на эту сторону.

2. ,

здесь  и – произвольные стороны треугольника,  – угол между этими сторонами:

3.  Формула Герона:

 – здесь  –  длины сторон треугольника,   – полупериметр треугольника, 

4. ,

здесь  – полупериметр треугольника, – радиус вписанной окружности.

Пусть – длины отрезков касательных.

Тогда формулу Герона можно  записать в таком виде:

5.

6. ,

здесь  – длины сторон треугольника,  –  радиус описанной окружности.

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

– это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка,  меньший из которых равен радиусу вписанной окружности, а больший – радиусу описанной окружности.

Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника вычисляется по формуле:

,

здесь  – медиана, проведенная к стороне ,  – длины сторон треугольника.

Биссектриса треугольника

– это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все точки биссектрисы угла равноудалены от сторон угла.

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если , то  и наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:

Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Прямоугольный треугольник

это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна  90°.

Гипотенуза  – это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов: 

Радиус окружности, вписанной в прямоугольный треугольник, равен

,

здесь  – радиус вписанной окружности,  – катеты,  – гипотенуза:

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:

Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.

Определение синуса, косинуса , тангенса и котангенса прямоугольного треугольника смотрите  здесь.

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:

:

 Катет, лежащий против угла равен половине гипотенузы:

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

– угол при вершине.

и  – боковые стороны,

и – углы при основании.

– высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник) – это треугольник, все стороны и углы которого равны между собой.

Площадь правильного треугольника равна

,

где  – длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник, совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка,  меньший из которых равен радиусу вписанной окружности, а больший – радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

– это отрезок, соединяющий середины двух сторон.

https://www.youtube.com/watch?v=EBcYluJmMxE

На рисунке DE – средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC,  AC=2DE

Внешний угол треугольника

– это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.

Тригонометрические функции внешнего угла:

Признаки подобия треугольников:

1. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3. Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник , причем   – точка ее пересечения со стороной  ,    – точка ее пересечения со стороной , и   – точка ее пересечения с продолжением стороны  . Тогда

И.В. Фельдман, репетитор по математике.

Источник: https://ege-ok.ru/2012/05/04/vse-chto-nuzhno-znat-o-treugolnike

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.