F x 2x 3 найти производную функцию. Производная степенной функции (степени и корни)

Найти производную: алгоритм и примеры решений

F x 2x 3 найти производную функцию. Производная степенной функции (степени и корни)

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции.

Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного – в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

.

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

.

Из таблицы производных выясняем, что производная “икса” равна единице, а производная синуса – косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

.

Пример 2. Найти производную функции

.

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

1. Производная константы (числа). Любого числа (1, 2, 5, 200…), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего “икса”. Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны, т.е.

Правило 2. Если функции

и

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой. 

Следствие 1. Постоянный множитель можно выносить за знак производной:

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

и

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные – в статье “Производная произведения и частного функций”.

Здесь же (далее) – более простые примеры на производную произведения и частного, на которых Вы увереннее освоите алгоритмы вычислений.

Замечание.

Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u'v, в котором u – число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка – механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие “Производная суммы дробей со степенями и корнями”.

Если же перед Вами задача вроде , то Вам на занятие “Производные простых тригонометрических функций”.

Пошаговые примеры – как найти производную

Пример 3. Найти производную функции

.

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители – суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус.

В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, “икс” у нас превращается в единицу, а минус 5 – в ноль.

Во втором выражении “икс” умножен на 2, так что двойку умножаем на ту же единицу как производную “икса”. Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие “Производная суммы дробей со степенями и корнями”.

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок “Производные простых тригонометрических функций”.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Производная, дифференциал и их применение

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых – квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого – квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Найти производные самостоятельно, а затем посмотреть решения

Пример 7. Найти производную функции

.

Правильное решение и ответ.

Пример 8. Найти производную функции

.

Правильное решение и ответ.

Пример 10. Найти производную функции

.

Правильное решение и ответ.

Пример 11. Найти производную функции

.

Правильное решение и ответ.

Продолжаем искать производные вместе

Пример 12. Найти производную функции

.

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных – под номером 3), получим

.

Пример 13. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 14. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 15.Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных – номер 5):

Шаг3. В частном знаменатель – также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя – это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

,

а производная, требуемая в условии задачи:

Производная степенной функции (степени и корни)

F x 2x 3 найти производную функцию. Производная степенной функции (степени и корни)

Вывод формулы производной степенной функции (x в степени a). Рассмотрены производные от корней из x. Формула производной степенной функции высшего порядка. Примеры вычисления производных.

Производная от x в степени a равна a, умноженному на x в степени a минус один:
(1)   .

Производная от корня степени n из x в степени m равна:
(2)   .

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a:
(3)   .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Теперь находим производную, применяя правило дифференцирования сложной функции:
;
.
Здесь .

Формула (1) доказана.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4)   .

Чтобы найти производную, преобразуем корень к степенной функции:
. Сравнивая с формулой (3) мы видим, что

.

Тогда

.

По формуле (1) находим производную:
(1)   ;
;
(2)   .

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0. Найдем производную функции (3) при x = 0. Для этого воспользуемся определением производной:
.

Подставим x = 0:
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , . Этот результат получается и по формуле (1):

(1)   .

Поэтому формула (1) справедлива и при x = 0.

Случай x < 0

Снова рассмотрим функцию (3):
(3)   .
При некоторых значениях постоянной a, она определена и при отрицательных значениях переменной x. А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n – целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x. Например, при n = 3 и m = 1 мы имеем кубический корень из x:
.
Он определен и при отрицательных значениях переменной x.

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a, для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции:

.
Здесь . Но
.
Поскольку , то
. Тогда

.

То есть формула (1) справедлива и при :
(1)   .

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3)   . Производную первого порядка мы уже нашли:

.

Вынося постоянную a за знак производной, находим производную второго порядка:
. Аналогичным образом находим производные третьего и четвертого порядков:

;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом, , то n-я производная является постоянной:
. Тогда все последующие производные равны нулю:

,

при .

Пример

Найдите производную функции:
.

Решение

Преобразуем корни к степеням:
;
. Тогда исходная функция приобретает вид:

.

Находим производные степеней:
;
. Производная постоянной равна нулю:

.

Применяем правило дифференцирования суммы и выносим постоянные за знак производной:

.

Применяем правило дифференцирования сложной функции:

.
Здесь .

Преобразуем степени в корни:
;
;
;
;
;
.

Ответ

Еще примеры

Найти производные следующих функций, зависящих от переменной x:
    Решение > > >           Решение > > >           Решение > > >           Решение > > >           Решение > > >      

Найти производную шестого порядка следующей функции:
.
Решение > > >

Все примеры > > >

Олег Одинцов.     : 09-04-2017

Источник: https://1cov-edu.ru/mat_analiz/proizvodnaya/funktsii/stepeni-korni/

Типичные ошибки при вычислении производной

F x 2x 3 найти производную функцию. Производная степенной функции (степени и корни)

В эпиграфе описана реальная ситуация из моей практики. Вопрос возник, когда ученик запутался в правилах дифференцирования функций, в частности, не смог определить производную произведения двух функций.

Во избежание подобной трактовки этой статьи напомню, что мы занимаемся именно математикой, и здесь термин “произведение” обозначает результат операции умножения, а “производная” это предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю.

Процесс вычисления производной называется дифференцированием.

Производные элементарных функций по определению, т.е. через предел, вычисляют только однажды на лекции (на уроке), чтобы закрепить связь производной и предела. В дальнейшем нас интересует только практическое применение этого понятия, поэтому для вычисления производной пользуются готовыми Формулами и Правилами дифференцирования функций.

Здесь мы посмотрим как надо и как не надо вычислять производные, но, к сожалению, многие школьники и даже студенты это делают.

Как надо вычислять производные

Об этом написано везде, во всех учебниках и на множестве сайтов в сети.
Чтобы находить производные, нужно, пользуясь тем или иным источником, всё-таки выучить Формулы дифференцирования элементарных функций. Например, посмотрите подробную статью о Таблице производных и первообразных.

  Для более сложных, чем табличные, комбинированных функций применяются правила вычисления производной суммы, произведения, дроби. Соответствующие математические выражения также можно найти где угодно.

Но, на мой взгляд, Правила дифференцирования функций лучше формулировать и заучивать словами:

  1. Постоянный множитель можно выносить за знак производной.
  2. Производная суммы равна сумме производных.

  3. Производная произведения равна “производная первого сомножителя, умноженная на второй, плюс производная второго сомножителя, умноженная на первый”.
  4. Производная дроби равна “производная числителя, умноженная на знаменатель, минус производная знаменателя, умноженная на числитель, деленные на знаменатель в квадрате”.

  5. Производная сложной функции равна производной внешней функции, умноженной на производную внутренней, и вычисляется “с продолжением” до табличной.

Последнее правило самое трудное для применения. Здесь допускается большое количество ошибок, поэтому о нём подробнее ниже.

Как НЕ надо вычислять производные

  1. Прежде всего, не надо усложнять простое.
  2. Не надо путать слагаемые и сомножители (сумму и произведение).
  3. Не надо путать степенную x а и показательную a x функции.

  4. Не надо забывать о том, что производная сложной функции вычисляется “с продолжением” до получения табличной формулы.
  5. Не надо стесняться ставить скобки.

В большинстве последующих примеров представлены варианты вычислений производных, в которых

1.

вычисления выполнены совсем плохо  , с явными ошибками;

2. правильно, но неоптимально  , т.е. долго и с вероятными ошибками на невнимательность;
3. совсем хорошо  .

Обратите внимание, на правило, которое я поставила под номером один.

Если в произведении один из сомножителей является постоянной величиной, то совершенно не обязательно пользоваться правилом производной произведения. Более того, не нужно этого делать, так как часто такая операция сопровождается ошибками. Постоянный множитель можно выносить за знак производной!

Пример 1.

Если в дроби числитель или знаменатель является постоянной величиной, то совершенно необязательно пользоваться правилом для производной дроби. Это действие у школьников и студентов ещё чаще сопровождается ошибками. Постоянный множитель можно выносить за знак производной!

Пример 2.

Пример 3.

Самая частая ошибка в подобных примерах – забыть поставить штрих (обозначение производной) над числом или поставить его и “не увидеть” при следующем действии, т.е. не учесть, что производная константы (числа) равна нулю.

Здесь для первого и третьего примеров простота и качество подхода c вынесением числового множителя за скобки очевидна.

Но не всё так однозначно для второго примера, где в знаменателе находится тригонометрическая функция.

Более того, соглашусь, что для тех учеников, которые плохо владеют производной сложной функции (правилом 5), более предпочтительным в этом примере может оказаться правило дифференцирования дроби.

Однако, для ряда других функций, особенно для степенных, просто необходимо знаменатель “превращать” в числитель, а корни — в степени, потому что в этом случае мы сможем воспользоваться самой простой и самой запоминающейся табличной формулой (xα)' = αxα − 1.

Пример 4.

Пример 5.

В этих двух примерах, представлены обычные ошибки при дифференцировании дроби с константой, а в следующем примере переход от корня к дробной степени нужен потому, что иначе часто забывают, что подобная функция не является табличной и должна дифференцироваться по правилу для сложной функции.

Пример 6.

Константа-слагаемое при дифференцировании обнуляется, константа-сомножитель при дифференцировании сохраняется.

Кроме того, почему-то для многих учеников производную функции y = x2 + 0,1 вычислить легче, чем такую же производную вида (0,1 + х2)'.

И для производной функции y = 0,1х2 часто догадываются о существовании первого правила, а для (х2·0,1)' нет.

Если Вы допускаете ошибки такого рода, то вспомните, что от перестановки мест слагаемых сумма не изменяется, и от перестановки сомножителей произведение не изменяется. Переставьте их так, как вам удобнее, и аккуратно примените первое или второе правила дифференцирования.

Пример 7.

В первом случае переменная находится в основании степени, читаем: “икс в степени а”. Во втором — переменная в показателе степени, читаем “а в степени икс”. Функции разные, формулы для вычисления производных разные. См. таблицу.

Пример 8.

Пример 9.

Это пример для продвинутых. Задумайтесь о том, как бы Вы вычислили производную функции y = xx, в которой переменную поместили и в основание, и в показатель степени.
Хорошо подумав, но не раньше, кликните по , чтобы раскрыть мой ответ.

Это сложная функция, которая не относится напрямую ни к классу степенных, ни к классу показательных. Для вычисления производной в таких случаях часто требуется произвести предварительные преобразования.

Например, здесь сначала выражение прологарифмировали, затем нашли производные обеих частей равенства по своим переменным и, наконец, составили уравнение для нахождения нужной производной по переменной х.

Сложная функция, это функция зависящая не напрямую от заданной переменной, а от другой функции. Иными словами, её значение нельзя вычислить в одно действие. Например, функции y = sinx2 и y = sin2x являются сложными. Посмотрим, как вычисляются их значения, например при х = 2.

Для функции y = sinx2 нужно сначала возвести x в квадрат: 22 = 4, а затем вычислить значение синуса 4-ёх. Сделаем это с помощью калькулятора: sin4 = −0,75680249530792825… ≈ −0,76 (не забудьте, что аргументы тригонометрических функций считаются заданными в радианах).

Для функции y = sin2x сначала определяем значение синуса 2-ух с помощью калькулятора: sin2 = 0,9092974268256816…, а затем возводим это значение в квадрат sin22 = (0,9092974268256816…)2 = 0,82682181043180595… ≈ 0,83.

Таким образом, мы сначала вычисляем значение внутренней функции, а затем используем его как аргумент для внешней.
Согласно пятому правилу дифференцирования, при определении производной нужно поступать наоборот – сначала вычислять производную внешней функции по её аргументу, а затем умножать её на производную внутренней.

Как я уже упоминала, в этой операции ошибаются чаще всего. Ошибки могут быть самые разные, распространены следующие три.

1-я ошибка) Можно просто не применить нужное правило, “не заметив”, что функция сложная.
В следующем примере формулы дифференцирования степенной и тригонометрической функций использованы не последовательно, а одновременно, производная неверно вычислена в одно действие.

Пример 10.

2-я ошибка) Можно не разобраться, где внутренняя, а где внешняя функции.
В следующем примере показатель степени стоит над x, т.е. над аргументом, поэтому степенная функция внутренняя, а синус внешняя. Ученик воспринял это иначе, решил, что синус в квадрате и допустил ошибку.

Пример 11.

Чтобы избавиться от ошибок такого рода, научиться анализировать сложную функцию, отделять внутреннюю от внешней, нужно просто смотреть в каком порядке Вы бы проводили вычисления, и дифференцирование проводить в обратном порядке.

При этом можно расставлять отсутствующие скобки, а если всё равно испытываете трудности, то вводить дополнительные обозначения.

Что касается степеней, то можно запомнить следующее – над каким обозначением стоит показатель степени, то и является её основанием (возводится в степень).

Пример 12.

Здесь в конце использована тригонометрическая формула синуса двойного угла для того, чтобы записать ответ в наиболее компактной форме.

Пример 13.

Здесь в конце переставлены сомножители также для того, чтобы записать ответ в более компактной и удобочитаемой форме.

3-я ошибка) Правило используется не до конца
Один раз учли, что функция сложная и хватит. А если функция вложена несколько раз? Например, корень квадратный из суммы двух логарифмов с разными основаниями, первый из которых зависит от sinx, а второй от cosx. Или арктангенс, зависящий от натурального логарифма, который, в свою очередь, зависит от х в квадрате.

Пример 14.

Пример 15.

Предыдущий пример демонстрирует выход из положения с помощью введения дополнительных обозначений. Но, на мой взгляд, это всё-таки не самый оптимальный способ для длинных вычислений. Лучший подход к дифференцированию сложной функции – скобки, которые можно дописывать явно или, по мере укрепления навыка, представлять себе мысленно.

Расставляем скобки и постепенно снаружи внутрь раскрываем их. Содержимое очередной скобки является переменной, по которой производится дифференцирование по формуле fu'·(u)'. Производную fu' находим по таблице производных, заменяя в формуле x на u.

Если всё сделано правильно, то процесс закончится тем, что содержимое последней, самой внутренней скобки полностью совпадёт с одной из табличных формул для производных.

Пример 16.

PS:

Источник: http://mathematichka.ru/school/errors/derivative_error.html

Калькулятор онлайн. Найти (с решением) производную функции

F x 2x 3 найти производную функцию. Производная степенной функции (степени и корни)

Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.

А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.

Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.

Примеры подробного решения >>

Введите выражение функции Найти производную функции f(x) Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать. Возможно у вас включен AdBlock.

В этом случае отключите его и обновите страницу.

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь. Через несколько секунд решение появится ниже.

Пожалуйста подождите  сек…

Наши игры, головоломки, эмуляторы: Игра “iChart”Создание островаЭмулятор
гравитацииГоловоломка “SumWaves”

Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала.

Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac{\Delta y}{\Delta x} \).

Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ y'. Отметим, что y' = f(x) – это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x).

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)

Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \): $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$

Это означает, что около точки х выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \).

Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х.

Например, для функции \( y = x2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

1. Зафиксировать значение \( x \), найти \( f(x) \) 2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \) 3. Найти приращение функции: \( \Delta y = f(x + \Delta x) – f(x) \) 4. Составить отношение \( \frac{\Delta y}{\Delta x} \) 5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$

Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.

Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
$$ C'=0 $$ $$ x'=1 $$ $$ ( f+g)'=f'+g' $$ $$ (fg)'=f'g + fg' $$ $$ (Cf)'=Cf' $$ $$ \left(\frac{f}{g} \right) ' = \frac{f'g-fg'}{g2} $$ $$ \left(\frac{C}{g} \right) ' = -\frac{Cg'}{g2} $$ Производная сложной функции:
$$ f'_x(g(x)) = f'_g \cdot g'_x $$ $$ \left( \frac{1}{x} \right) ' = -\frac{1}{x2} $$ $$ ( \sqrt{x} ) ' = \frac{1}{2\sqrt{x}} $$ $$ \left( xa \right) ' = a x{a-1} $$ $$ \left( ax \right) ' = ax \cdot \ln a $$ $$ \left( ex \right) ' = ex $$ $$ ( \ln x )' = \frac{1}{x} $$ $$ ( \log_a x )' = \frac{1}{x\ln a} $$ $$ ( \sin x )' = \cos x $$ $$ ( \cos x )' = -\sin x $$ $$ ( \text{tg} x )' = \frac{1}{\cos2 x} $$ $$ ( \text{ctg} x )' = -\frac{1}{\sin2 x} $$ $$ ( \arcsin x )' = \frac{1}{\sqrt{1-x2}} $$ $$ ( \arccos x )' = \frac{-1}{\sqrt{1-x2}} $$ $$ ( \text{arctg} x )' = \frac{1}{1+x2} $$ $$ ( \text{arcctg} x )' = \frac{-1}{1+x2} $$

Источник: https://www.math-solution.ru/math-task/derivative

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.