Х среднее. Как найти среднее арифметическое чисел? Степенные средние величины

Средние величины

Х среднее. Как найти среднее арифметическое чисел? Степенные средние величины

Наиболеераспространенной формой статистическихпоказателей, используемой всоциально-экономических исследованиях,является средняявеличина, представляющаясобойобобщеннуюколичественную характеристику признанияв статистической совокупности вконкретных условиях места и времени.

Средняя величинавыражаеттипичныечерты и даетобобщающую характеристику однотипныхявлений по одному из выражающих признаков.

Важнейшее свойствосредней заключается в том, что онаотражает то общее, что присуще всемединицам исследуемой совокупности.

Средняя величинабудет типичной только тогда, когда онабудет рассчитана по качественнооднородной совокупности.

Например используя для расчета средние величиныдоходов: служащих государственных,совместных предприятий, наука, культураи т.п., является крайне неоднородной.

В этом и другихслучаях метод средних используется всочетании с методом группировок: еслисовокупность не однородна – общеесреднее должны быть занесены илидополнены групповыми средними, т.е.средними, рассчитанными по по качественнооднородным группам.

Виды среднихи методы их расчета.

В практикестатистической обработки материалавозникают различные задачи, имеютсяособенности изучаемых явлений и поэтомудля их решения требуются различныесредние.

Математическаястатистика выводит различные средниеиз формул степенной средней:

==

При Z= 1 ср. арифметическая

Z= 0 ср. геометрическая

Z=-1 ср. гармоническая

Z=2 ср. квадратическая

Однако вопрос отом, какой вид средней необходимоприменить в отдельном случае, разрешаетсяпутем конкретного анализа изучаемойсовокупности введем следующие понятия:

1 признак по которомунаходится средняя называется осредняемымпризнаком()

2 величинаосредняемого признака у каждой единицысовокупности называется индивидуальнымзначением осредняемого признака иливариантами (х; х2; х3….хn)

3 Чаcтота– этоповторяемость индивидуальных значенийпризнака (f)

Средняя арифметическая– распространенная. Она исчисляется втех случаях, когда объем определяемогопризнака образуется как сумма егозначений у отдельных единиц изучаемойстатистической совокупности.

В зависимости отхарактера исходных данных средняяарифметическая определяется следующимобразом:

1 Н-р Найтисредний стаж работы 10 работников:6,5,4,3,3,4,5,4,5,4, т.е. даны одиночные значения

==(6+5+4+3+3+4+5+4+5+4)/10= 43/10 = 4,3года

  1. Когда значение признака встречается несколько раз.

Средня взвешенная арифметическая

=или=

Пример расчета

Взвешенная дискретнаяВзвешенная интервальная
Оценки, получаемые на экзамене по математикеЧисло неявок на занятия
оценкиКол-во студентовГруппы по числу неявокЧисло студентов
234512107интервальныйдискретный
До56-1011-1516-20>208-5=3853138531
Итого:20Итого:20

=(2*1+3*2+4*10+5*7)/20=83/20= 4.15

=3*3+8*8+13*5+18*3+23/20= 215/20=10.75

Свойства среднейарифметической

П-р Продажаакций АО «Дока хлеб» на торгах фондовойсекции ТБМ «Гермес»

СуммаКол-во проданных акций, шт.Курс продажи, руб.
15001080
23001050
311001145

1 средняяарифметическая из постоянных чиселравна этому постоянному числу

Если х = а. Тогда =

2 Если веса всехвариантов пропорционально изменить,т.е. увеличить или уменьшить в одно Итоже число, то нового ряда от этого не изменится.

Уменьшатся все fв к раз.

=

=1112.89=1112.9

  1. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна 0, т.е.

из-за округления.

4 Если все вариантыуменьшить или увеличить на какое- либочисло, то среднее арифметическое новогоряда уменьшится или увеличится настолько же.

X1=x-a

Курс продажиувеличился в 1,5 раза, т.е. на 50%

5Если все вариантыуменьшить или увеличить в к раз, тосреднее арифметическое нового рядауменьшится или увеличится во столькоже, т.е. в к раз

Пусть

Отсюда в полтора раза

иногда роль частотпри исчислении средней играет частота(w). Посчитаем частоты во втором примере

W,% 15; 40; 25;15; 5;

Средняягармоническая.

Это величинаобратная средней арифметической, когдаz=-1.

Когда статистическаяинформация не содержит частот поотдельным вариантам совокупности, апредставлена как их произведение,применяется средне гармоническаявзвешенная.

Н-р, расчет среднейцены

Средняя цена =

ГородЦена, руб. хiреализации т.р.WiЧастотыfi =
А3060020
Б20100050
В3535010
Итого:195080

Известны:

1 реализации

2 Цена Найти: Кол-вореализованных единиц.

Неверный путь.

простая

Где – сумма обратных значений вариант

n– число вариант M=fx

Применение: длярасчета некоторых индексов, в частностииндекса цен.

Средняягеометрическая –это величина, используемая как средняяиз отношений или в рядах распределения,представленных в виде геометрическойпрогрессии Z=0

т.е.прямой подставленной средняя невыводится.n– число вариант

Пример

Доходы населенияРоссии представлены табл.

1985г.244,7 млрд.
1986г283,6 млрд.
1987г264,3 млрд.
1988г287,2 млрд.
1989г324,6 млрд.
1990 г384,7 млрд.

Рассчитать среднегодовой доход населения

Решение

1 найдем цепные Тр

1985г

1986г 253,6/244,7 =1,04

1987г 264,3/253,6 =1,04

1988г 1,09

1989г 1,13

1990г 1,18

Этой средней удобнопользоваться, когда уделяется вниманиене абсолютным разностям, а отношениемдвух чисел. Поэтому ср. геометрическаяиспользуется в расчетах ср. годовыхтемпов роста.

простая

взвешенная

где х – вариантосредняемого критерия

П – произведениевариантов

f– частота вариантов

Средняяквадратичная.

Z=2

=

В экономическихисследованиях ср. квад. в измененномвиде широко используется для характеристикивариации признака (дисперсия, среднееквадратическое отклонение).

Между степеннымисредними существует следующая зависимость:чем больше показатель степени, тем >значение средней.

Значение к-1012и т.д.
Отношение м\у сред

Источник: https://studfile.net/preview/4404051/

Московский государственный университет печати

Х среднее. Как найти среднее арифметическое чисел? Степенные средние величины

5.

Тема 5. Средние величины как статистические показатели

5.1.

Понятие средней величины. Область применения средних величин в статистическом исследовании

Средние величины используются на этапе обработки и обобщения полученных первичных статистических данных. Потребность определения средних величин связана с тем, что у различных единиц исследуемых совокупностей индивидуальные значения одного и того же признака, как правило, неодинаковы.

https://www.youtube.com/watch?v=ZNHPq4W6hRs

Средней величиной называют показатель, который характеризует обобщенное значение признака или группы признаков в исследуемой совокупности.

Если исследуется совокупность с качественно однородными признаками, то средняя величина выступает здесь как типическая средняя.

Например, для групп работников определенной отрасли с фиксированным уровнем дохода определяется типическая средняя расходов на предметы первой необходимости, т.е.

типическая средняя обобщает качественно однородные значения признака в данной совокупности, каковым является доля расходов у работников данной группы на товары первой необходимости.

При исследовании совокупности с качественно разнородными признаками на первый план может выступить нетипичность средних показателей.

Такими, к примеру, являются средние показатели произведенного национального дохода на душу населения (разные возрастные группы), средние показатели урожайности зерновых культур по всей территории России (районы разных климатических зон и разных зерновых культур), средние показатели рождаемости населения по всем регионам страны, средние температуры за определенный период и т.д. Здесь средние величины обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). Такие средние величины называют системными средними.

Таким образом, значение средних величин состоит в их обобщающей функции. Средняя величина заменяет большое число индивидуальных значений признака, обнаруживая общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами.

5.2.

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

Используются две категории средних величин:

  • степенные средние;
  • структурные средние.

Первая категория степенных средних включает: среднюю арифметическую, среднюю гармоническую, среднюю квадратическую и среднюю геометрическую.

Вторая категория (структурные средние) – это мода и медиана. Эти виды средних будут рассмотрены в теме «Ряды распределения».

Введем следующие условные обозначения:

– величины, для которых исчисляется средняя;

– средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

– частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 – средняя арифметическая; k = -1 – средняя гармоническая; k = 0 – средняя геометрическая; k = -2 – средняя квадратическая.

Средние величины бывают простые и взвешенные.

Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность.

Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней.

Средняя арифметическая – самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая – это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой) имеет вид

(5.2)

где n – численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной, которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

    1 – 800 ак. – 1010 руб.2 – 650 ак. – 990 руб.3 – 700 ак. – 1015 руб.4 – 550 ак. – 900 руб.5 – 850 ак. – 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):

ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;

КПА = 800+650+700+550+850=3550.

В этом случае средний курс стоимости акций был равен

Необходимо знать свойства арифметической средней, что очень важно как для ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.

Свойство первое (нулевое): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.

Доказательство:

Свойство второе (минимальное): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.

Доказательство.

Составим сумму квадратов отклонений от переменной а:

(5.4)

Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда получаем:

(5.5)

Следовательно, экстремум суммы квадратов отклонений достигается при . Этот экстремум – минимум, так как функция не может иметь максимума.

Свойство третье: средняя арифметическая постоянной величины равна этой постоянной: при а = const.

Кроме этих трех важнейших свойств средней арифметической существуют так называемые расчетные свойства, которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:

  • если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
  • средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
  • если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.

Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

(5.6)

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая – со скоростью 100 км/ч, вторая – 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид

(5.7)

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:

Вид товараЦена за единицу, руб.Сумма реализаций, руб.
а50500
б40600
с601200

Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Средняя геометрическая.

Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин.

Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

Для простой средней геометрической

Для взвешенной средней геометрической

(5.9)

Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).

Формула простой средней квадратической

(5.10)

Формула взвешенной средней квадратической

(5.11)

В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:

    а) установление обобщающего показателя совокупности;б) определение для данного обобщающего показателя математического соотношения величин;в) замена индивидуальных значений средними величинами;г) расчет средней с помощью соответствующего уравнения.

Вопросы для самоконтроля к теме 5

Источник: http://www.hi-edu.ru/e-books/xbook096/01/part-005.htm

Способы вычисления среднего арифметического

Простое среднееВзвешенное среднееСпособ моментов
VPVPVPVPdPd
15115115151-2-2
16116348163-1-3
17117585A=17500
1811847218414
1911923819224
V=85n=5P=15VP =258P=15PD=3
M=85/5=17M=258/15=17,2M=17+(3/15)1=17,2

Упрощеннымвариантом ручного вычисления среднегоарифметического в сгруппированном рядуявляется вычисление по способу моментов.Не вдаваясь в математическое обоснованиеспособа моментов, можно выделитьследующие этапы вычисления среднегоэтим способом (Таблица 69, третий раздел):

  1. В ранжированном ряду распределения выбирается условное среднее А. За условное среднее можно принять любую варианту данного ряда. Для удобства вычисления лучше брать варианту ближе всего лежащую к центру ряда распределения и чаще всего встречающуюся (с наибольшей частотой Р).

  2. Выставляются условные отклонения d. Их абсолютные значения последовательно увеличивают на единицу, начиная от 0, который соответствует варианте, принятой за условное среднее. Знак минус обозначает уменьшение вариант от условного среднего. Плюс – соответственное увеличение вариант.

  3. Произведения условных отклонений на соответствующие им частоты (Pd) суммируются с учетом отрицательных знаков (Pd).

  4. Для того, чтобы определить среднее арифметическое, полученная сумма делится на число наблюдений n =. Частное от этого деления умножается на величину интервала вариационного ряда (h); h, и к результату перемножения прибавляется условное среднее (А); А+h.

Нетруднозаметить, что вариационные рядыпредставляют собой арифметическиепрогрессии. В этих прогрессиях отдельныечисловые значения или группы числовыхзначений признака располагаются строгоупорядочено и с определенным интервалом.

Вместе с тем, иногда встречается ситуация,когда необходимо вычислить суммарнуюсреднюю или «среднее из несколькихсредних» в ситуации неравных почисленности исходных групп данных. Вэтом случае среднее арифметическоевычисляют, рассматривая каждую группукак самостоятельную совокупность. Вкаждой из этих групп сначала вычисляетсясвоё среднее.

Затем на основе этих данныхопределяют общее среднее, учитываячисло наблюдений в каждой группе Мобщ=. Для наглядности рассмотрим пример.(Таблица 70)

Таблица70

Источник: https://studfile.net/preview/2073870/page:42/

Средние величины и показатели вариации

Х среднее. Как найти среднее арифметическое чисел? Степенные средние величины

Средняя величина – это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой.

Существует 2 класса средних величин: степенные и структурные.

К структурным средним относятся мода и медиана, но наиболее часто применяются степенные средние различных видов.

Степенные средние величины

Степенные средние могут быть простыми и взвешенными.

Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле:

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

где X – значения отдельных статистических величин или середин группировочных интервалов;
m – показатель степени, от значения которого зависят следующие виды степенных средних величин:
при m = -1 средняя гармоническая;
при m = 0 средняя геометрическая;
при m = 1 средняя арифметическая;
при m = 2 средняя квадратическая;
при m = 3 средняя кубическая.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

Средняя арифметическая

Средняя арифметическая – это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

где X – значения величин, для которых необходимо рассчитать среднее значение; N – общее количество значений X (число единиц в изучаемой совокупности). Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4.

Средняя арифметическая взвешенная имеет следующий вид:

где f – количество величин с одинаковым значением X (частота). Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4.

Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

Например, на предприятии 10 работников со стажем работы до 3 лет, 20 – со стажем от 3 до 5 лет, 5 работников – со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет):
(2*10+4*20+6*5)/(10+20+5) = 3,71 года.

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

Средняя гармоническая

Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:

Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно – со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w1=w2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч.

Средняя геометрическая

Средняя геометрическая применяется при определении средних относительных изменений, о чем сказано в теме Ряды динамики. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.

Например, в период с 2005 по 2008 годы индекс инфляции в России составлял: в 2005 году – 1,109; в 2006 – 1,090; в 2007 – 1,119; в 2008 – 1,133. Так как индекс инфляции – это относительное изменение (индекс динамики), то рассчитывать среднее значение нужно по средней геометрической: (1,109*1,090*1,119*1,133)(1/4) = 1,1126, то есть за период с 2005 по 2008 ежегодно цены росли в среднем на 11,26%. Ошибочный расчет по средней арифметической дал бы неверный результат 11,28%.

Средняя квадратическая

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.

Главной сферой применения квадратической средней является измерение вариации значений X, о чем пойдет речь позднее в этой лекции.

Средняя кубическая

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.

Структурные средние величины

К наиболее часто используемым структурным средним относятся статистическая мода и статистическая медиана.

Статистическая мода

Статистическая мода – это наиболее часто повторяющееся значение величины X в статистической совокупности.

Если X задан дискретно, то мода определяется без вычисления как значение признака с наибольшей частотой. В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности.

Например, на предприятии работает 16 человек: 4 из них – со стажем 1 год, 3 человека – со стажем 2 года, 5 – со стажем 3 года и 4 человека – со стажем 4 года. Таким образом, модальный стаж Мо=3 года, поскольку частота этого значения максимальна (f=5).

Если X задан равными интервалами, то сначала определяется модальный интервал как интервал с наибольшей частотой f. Внутри этого интервала находят условное значение моды по формуле:

где Мо – мода;
ХНМо – нижняя граница модального интервала;
hМо – размах модального интервала (разность между его верхней и нижней границей);
fМо – частота модального интервала;
fМо-1 – частота интервала, предшествующего модальному;
fМо+1 – частота интервала, следующего за модальным. Например, на предприятии 10 работников со стажем работы до 3 лет, 20 – со стажем от 3 до 5 лет, 5 работников – со стажем более 5 лет. Рассчитаем модальный стаж работы в модальном интервале от 3 до 5 лет: Мо = 3 + 2*(20-10)/(2*20-10-5) = 3,8 (года).

Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Статистическая медиана – это значение величины X, которое делит упорядоченную по возрастанию или убыванию статистическую совокупность на 2 равных по численности части. В итоге у одной половины значение больше медианы, а у другой – меньше медианы.

Если X задан дискретно, то для определения медианы все значения нумеруются от 0 до N в порядке возрастания, тогда медиана при четном числе N будет лежать посередине между X c номерами 0,5N и (0,5N+1), а при нечетном числе N будет соответствовать значению X с номером 0,5(N+1).

Например, имеются данные о возрасте студентов-заочников в группе из 10 человек – X: 18, 19, 19, 20, 21, 23, 23, 25, 28, 30 лет. Эти данные уже упорядочены по возрастанию, а их количество N=10 – четное, поэтому медиана будет находиться между X с номерами 0,5*10=5 и (0,5*10+1)=6, которым соответствуют значения X5=21 и X6=23, тогда медиана: Ме = (21+23)/2 = 22 (года).

Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

где Ме – медиана;
ХНМе – нижняя граница медианного интервала;
hМе – размах медианного интервала (разность между его верхней и нижней границей);
fМе – частота медианного интервала;
fМе-1 – сумма частот интервалов, предшествующих медианному. В ранее рассмотренном примере при расчете модального стажа (на предприятии 10 работников со стажем работы до 3 лет, 20 – со стажем от 3 до 5 лет, 5 работников – со стажем более 5 лет) рассчитаем медианный стаж. Половина общего числа работников составляет (10+20+5)/2 = 17,5 и находится в интервале от 3 до 5 лет, а в первом интервале до 3 лет – только 10 работников, а в первых двух – (10+20)=30, что больше 17,5, значит интервал от 3 до 5 лет – медианный. Внутри него определяем условное значение медианы: Ме = 3+2*(0,5*30-10)/20 = 3,5 (года).

Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Показатели вариации

Вариация – это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации: размах вариации, среднее линейное отклонение, линейный коэффициент вариации, дисперсия, среднее квадратическое отклонение, квадратический коэффициент вариации.

Размах вариации

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение

Cреднее линейное отклонение – это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой – получим среднее линейное отклонение простое:

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной – получим среднее линейное отклонение взвешенное:

Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4 и среднее линейное отклонение простое = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

Линейный коэффициент вариации

Линейный коэффициент вариации – это отношение среднего линейного отклонение к средней арифметической:

С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, линейный коэффициент вариации составит 0,5/4 = 0,125 или 12,5%.

Дисперсия

Дисперсия – это средний квадрат отклонений значений X от среднего арифметического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой – получим дисперсию простую:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил оценки: 3, 4, 4 и 5, ранее уже была рассчитана средняя арифметическая = 4. Тогда дисперсия простая Д = ((3-4)2+(4-4)2+(4-4)2+(5-4)2)/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной – получим дисперсию взвешенную:

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию взвешенную: Д = ((3-4)2*1+(4-4)2*2+(5-4)2*1)/4 = 0,5.

Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию методом разности средней квадратов и квадрата средней:
Д = (32*1+42*2+52*1)/4-42 = 16,5-16 = 0,5.

Если значения X – это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли:

.

Cреднее квадратическое отклонение

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

В примере про студента, в котором выше рассчитали дисперсию, найдем среднее квадратическое отклонение как корень квадратный из нее: .

Квадратический коэффициент вариации

Квадратический коэффициент вариации – это самый популярный относительный показатель вариации:

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 – вариация считает слабой, а если больше 0,333 – сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина – нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.

В примере про студента, в котором выше рассчитали среднее квадратическое отклонение, найдем квадратический коэффициент вариации V = 0,707/4 = 0,177, что меньше критериального значения 0,333, значит вариация слабая и равна 17,7%.
Предыдущая лекция… Следующая лекция…

Источник: https://chaliev.ru/statistics/srednie-velichiny-i-pokazateli-variatsyi.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.