Удельное электрическое сопротивление платины. Сопротивление меди в зависимости от температуры

ПОИСК

Удельное электрическое сопротивление платины. Сопротивление меди в зависимости от температуры
    При проектировании катодной защиты трубопроводов необходимо учитывать температуру, при которой он эксплуатируется, так как температурный коэффициент электрического сопротивления трубной стали достаточно высок (0,0035 /°С). [c.163]

    Тантал — тяжелый металл характерного синевато-серого цвета.

В чистом виде он обладает хорошими механическими свойствами твердостью, ковкостью и тягучестью. По прочности танталовая жесть как прокатанная, так и отпущенная близка к прокатанной и отпущенной стали. Тантал хорошо прокатывается и обрабатывается под давлением после отжига в холодном состоянии может быть обжат на 60%.

Сваривается под водой как с самим собой, так и с ЫЬ и N1. Отличается плохой теплопроводностью и электропроводностью сопротивление тантала электрическому току в 7 раз больше, чем у меди, а температурный коэффициент электрического сопротивления меньше, чем у меди.

При высокой температуре в вакууме он распыляется очень мало, на чем основано его применение в лампах накаливания. В нагретом состоянии поглощает N3 и другие газы, которые пол- [c.305]

    Малый температурный коэффициент электрического сопротивления. Если материал обладает значительным температурным коэффициентом, то получается [c.20]

    Температурный коэффициент электрического сопротивления монокристалла графита положительный, как и для большинства металлов, для блоков же и порошков при не слишком высоких температурах— отрицательный, т. е. их сопротивление при нагревании уменьшается.

Только при очень высоких температурах значение коэффициента проходит через нуль и может стать положительным. Это обусловлено сложением двух факторов, действующих в противоположных направлениях с одной стороны, сопротивление кристаллов графита с повышением тем- [c.

44]

    Температурный коэффициент электрического сопротивления лития в интервале О—100° С [11] принимает значения 4,58-10 з— —4,35-10 (среднее значение 4,50-10 ). [c.13]

    Для установления степени загрязнения более чистого металла использовали физические методы определение плотности [273, 274], удельного электрического сопротивления [1406, 1444], температурного коэффициента электрического сопротивления [1406] и т. д. Из физических методов наиболее пригодным считался рентгенографический метод Дебая — Шерера, который позднее был подвергнут критике [2051]. [c.220]

    Действие этих термометров, применяемых в температурном интервале от —250 °С до – -850°С, основано на использовании высокого температурного коэффициента электрического сопротивления платины, никеля или меди. Так, изменение сопротивления платины составляет в среднем 0,38% яа 1 С. Термометры сопротивления принадлежат к наиболее точным при- [c.50]

    Температурный коэффициент электрического сопротивления а – величина, равная отношению относительного изменения сопротивления участка электрической цепи к изменению его температуры, вызвавшему это изменение сопротивления. [c.409]

    Размерность температурного коэффициента электрического сопротивления  [c.409]

    НИХРОМ, общее название группы сплавов на основе №, содержащих Сг (15—20% ), А1 (до 3,5% ), Si (до 1,5%), микродобавки РЗЭ и др.

Обладают высокой жаростойкостью (до 1250 °С) в сочетании с высоким электрическим сопротивлением (1,05—1,40 мкОм-м) некоторые марки отличаются малым температурным коэффициентом электрического сопротивления (< 1 10" °С )- Применяется в виде лент и проволоки для изготовления нагревательных злементов электрических печей, прецизионных резисторов. [c.389]

    Температурные коэффициенты электрического сопротивления тоже определялись экспериментальным путем. Величины коэффициентов ос для нитей диаметром 100,6, 42,1, 22,5, 16,2, 8,4 и [c.15]

    III — температурный коэффициент электрического сопротивления  [c.139]

    I—плавкость Г/—давление истечения Л/—температурный коэффициент электрического сопротивления IV -электропроводность при 25° С. Заштрихованное области диаграммы соответствуют областям существования а, р и т твердых растворов висмута и таллия. [c.217]

    КОНСТАНТАН м. Сплав на основе меди, содержащий 39-41% никеля, 1-2% марганца обладает малым значением температурного коэффициента электрического сопротивления применяется для изготовления резистивных элементов измерительных приборов. [c.205]

    МАНГАНИН м. Сплав на основе меди, содержащий 11-14% марганца отличается очень малым значением температурного коэффициента электрического сопротивления применяется для изготовления эталонных сопротивлений и др. [c.243]

    Температурный коэффициент электрического сопротивления прн 273—373 К а=4,50-10 К . Абсолютный коэффициент т. э. д. с. при 298 К е= 12,2 мкВ/К. Постоянная Холла при комнатной температуре = —2-10 м /Кл. Удельная магнитная восприимчивость при 298 К Х=- 2,04-10-9. [c.31]

    При плавлении удельное электрическое сопротивление натрия возрастает в 1,451 раза. Температурный коэффициент электрического сопротивления натрия при 273 К а=4,34-10-з ( –  [c.38]

    При плавлении электрическое сопротивление калия возрастает в 1,45 раза. Температурный коэффициент электрического сопротивления калия при 273 К а=5,81 10- К . С увеличением давления удельное электрическое сопротивление твердого калия значительно уменьшается.

При 298 К и давлении 1177 МПа удельное электрическое сопротивление калия составляет 27,5 % от того значения, которое наблюдается при 0,098 МПа. В термопаре калий — платина при температуре горячего спая 173,16К развивается т э д. с. = + 0,780 мВ, а при температуре горячего спая 373,16 =—0,83 мВ.

Абсолютный коэффициент т. э. д. с. е=—15,6 мкВ/К. Максимальное значение коэффициента вторичной электронной эмиссии атах = 0,75 и соответствует ускоряющему напряжению первичных электронов Ер=0,2 кэВ. Постоянная Холла калня при комнатной температуре равна —4,2-10″ м /Кл.

Магнитная восприимчивость калия х=+0,53-10- при 293 К. [c.44]

    Температурный коэффициент электрического сопротивления рубидия В интервале температур 273—293 К а=4,7-10 К-. Прн плавлении электросопротивления рубидия возрастает в 1,6 раза. [c.50]

    Температурный коэффициент электрического сопротивления цезия в интервале температур 273—291 К равен а =6,0-10 К .  [c.56]

    Температурный коэффициент электрического сопротивления а серебра при 273 К равен 4,10-10 К . При переходе из твердого состояния в жидкое удельное электросопротивление увеличивается почти в два раза и продолжает возрастать при дальнейшем повышении температуры  [c.73]

    Температурный коэффициент электрического сопротивления золота в интервале 273—373 К равен а = 3,70-10 К . При плавлении электрическое сопротивление золота возрастает в 2,08 раза. [c.80]

    Температурный коэффициент электрического сопротивления в интервале 273—398 К а=3,9-ь4,3-10- К .  [c.98]

    Электрические и магнитные. Удельное электрическое сопротивление бария при 78 К р=0,16 мкОм-м, при 298 К р=0,60 мкОм-м. Удельная электрическая проводимость при 78 К а=6,25 МСм/м, при 298 К а= = 1,67 МСм/м. Температурный коэффициент электрического сопротивления при 298 К 0 = 3,6-10-3 К . Изменение удельного электросопротивления при плавлении рпл/ртв= 1,62.

Температура перехода в сверхпроводящее состояние Гс=1,ЗК при давлении 5 ГПа, 3,05 К при давлении 8,5—8.8 ГПа и 5,2 К при давлении 14 ГПа. Максимальное значение коэффициента вторичной электронной эмиссии бария атах=0,83 при ускоряющем напряжении первичных электронов 0,400 кэВ. Магнитная восприимчивость бария при 293 К Х= -1-0,15-10 . [c.

117]

    Температурный коэффициент электрического сопротивления а= =4.17-10- > К- при 273 К, 3,7-10- К” при 291—373 К. [c.124]

    Марганец применяется главным образом в производстве легированных сталей. Марганцовистая сталь, содержащая до 15% Мп, обладает высокими твердостью и прочностью. Из нее изготовляют рабочие части дробильных машин, щаровых мельниц, железнодорожные рельсы.

Кроме того, марганец входит в состав ряда сплавов на основе магния он повыщает их стойкость против коррозии. Сплав меди с марганцем и никелем — манганин (см. 200) обладает низким температурным коэффициентом электрического сопротивления.

В небольших количествах марганец вводится во многие сплавы алюминия. [c.663]

    Г. Дальтониды и бертоллиды. Часто, особенно в металлических системах, твердые фазы переменного состава образуются не на основе чистых компонентов, а на основе химических соединений, плавящихся конгруэнтно или инконгруэнтно.

Существуют твердые растворы с неограниченной и ограниченной растворимостью химического соединения и компонентов системы в твердом состоянии. Наиболее распространены твердые растворы, образованные из химических соединений с ограниченной растворимостью.

В системах такого типа твердые растворы образуются на основе действительных химических соединений, называемых дальтонидами. Состав дальтонидов удовлетворяет строго стехиометрическим соотношениям компонентов, подчиняющимся закону Дальтона. Дальтониду на диаграмме плавкости (рис.

151) соответствует рациональный максимум и сингулярная (особая) точка как на линии ликвидуса, так и на линии солидуса (фигуративная точка С).

Для дальтонидов характерно также наличие сингулярных точек, соответствующих химическому соединению А Вп и на изотермах состав — свойство (электропроводность, твердость, температурный коэффициент электрического сопротивления). Примерами систем с образованием твердых растворов такого типа могут служить системы Mg—Ар, Мр—Аи, Аи—7п. [c.415]

    Материал Плотность, кг/дм Удельное электрическое сопротивление при 20 С,10 Ом м Температурный коэффициент электрического сопротивления, ( ОХда Температура плавления, С Максимальная рабочая температура, С [c.23]

    В табл. 1 для ряда веществ приведены значения удельного электрического сопротивления р, температурного коэффициента электрического сопротивления а и произведения а ]/р. Кроме чистой платины, обладающей высокой химической стойкостью, рассматривается ряд других веществ в качестве материала для нагревателя.

Железо имеет, например, почти вдвое большее значение а]/р, чем платина. Так, платиновые сплавы, например платина — родий и платина — иридий, хотя и имеют меньшее значешш а по сравнению с чистой платиной, могут быть с успехом использованы в плечевых элементах благодаря высокому значению р.

Это дает возможность с применением более толстой проволоки получить высокое сопротивление плечевых элементов при такой же их длине. Сплав платина — никель дает неудовлетворительные результаты при высоких температурах нагрева. Высокое значение аУр в случае висмута приведено только для сравнения.

Висмут не может быть использован, так как он не вытягивается в проволоку. [c.124]

    Температурный коэффициент электрического сопротивления (т.к.с.) характеризует степень изменения сопротивления материала с ростом температуры в соответствии с формулой. Л, — Лм (1 ” а/ At), где – электрическое сопротивление мат иапа при комнатной температуре- Д Г – перепад температур (( – 20)°С. У металлов и сплавов значения Т.К.С. сильно различаются (см. табл. 1). Для массовой электротермии допустимое изменение электросопротивления нагревателей в процессе эксплуатации желательно иметь не более 20 %. Тогда, согласно приведенной формуле, допустимая величина температурного коэффициента получается не более 2 Ю” К . Более высокие значения т.к.с. обусловливают сильный пусковой толчок тока при включении холодной печи. [c.8]     Для определения газов, зыходящих из колонки после разделения, чаще всего измеряют теплопроводность газов, вернее, разницу теплопроводности определяемого газа и газа-носителя. Такой детектор, называемый катарометром, представляет собой массивный металлический корпус 3 (рис. 143), в котором имеется две камеры сравнительная 1 и измерительная 2. В камерах находятся проволочные или полупроводниковые сопротивления и 2, обладающие большим температурным коэффициентом электрического сопротивления. Эти сопротивления представляют собой два плеча мостика Уитстона. Газ-носитель поступает в камеру 1 с постоянной скоростью, проходит через кран 5 в хроматографическую колонку 4 непосредственно или через пробоотборный объем 6. Далее он проходит через камеру 2 и выходит наружу. [c.196]

    Источники излучения. Источником излучения в средней инфракрасной области служат штифт Нернста и глобар. Штифт Нернста применяется с первых лет развития спектрофотометр ни и до настоящего времени. Он представляет собою стержень из сцементированной и спрессованной смеси окислов циркония, церия и тория, разогреваемой электрическим током до 1600—1700° С.

Он обладает отрицательным температурным коэффициентом электрического сопротивления и поэтому требует предварительного подогрева (горелкой или иным способом) до температуры порядка 800° С.

При температуре 1500 С штифт Нернста излучает как абсолютно черное тело в ближней инфракрасной области при увеличении длины волны его коэффициент черноты уменьшается и глобар становится более выгодным. [c.260]

    Как в силитовых, так и в глобаровых элементах, предназначенных для работы при высоких температурах, содержание карбида кремния достигает 96—98%, примеси свободного кремния, углерода, окиси кремния и некоторых других веществ в сумме составляют 4—2%.

Удельное сопротивление карборундовых нагревательных элементов находится в пределах 1000—2000 ом-мм /м, причем их температурный коэффициент электрического сопротивления изменяется в зависимости от температуры, состава и структуры материала, а также от величины удельного сопротивления в холодном состоянии. На рис.

65 показан характер изменения сопротивления для некоторых карборундовых элементов в зависимости от температуры, [c.168]

Источник: https://chem21.info/info/706501/

Большая Энциклопедия Нефти и Газа

Удельное электрическое сопротивление платины. Сопротивление меди в зависимости от температуры

Cтраница 4

Основным требованием, предъявляемым Рє материалам, применяемым для преобразователей термометров сопротивления, является возможно больший Рё постоянный температурный коэффициент электрического сопротивления РїСЂРё одновременно возможно большем удельном сопротивлении.  [46]

Метод электрического сопротивления может быть применен для определения величины удельного электрического сопротивления СЂ Рё температурного коэффициента электрического сопротивления Р°. Например, РїСЂРё исследовании процесса отпуска стали получают РєСЂРёРІСѓСЋ электрическое сопротивление – температура отпуска. Р�зменение электрического сопротивления, характеризуемое этой РєСЂРёРІРѕР№, указывает РЅР° превращения, протекающие РІ стали РїСЂРё отпуске.  [47]

Яркость нити РІ оптическом пирометре.  [48]

Р�змерительный РїСЂРёР±РѕСЂ 8 представляет СЃРѕР±РѕР№ вольтметр, Р° РЅРµ амперметр, так как РёР·-Р·Р° большего температурного коэффициента электрического сопротивления вольфрама напряжение РЅР° нити изменяется РІ более широких пределах, чем проходящий через нее ток, Рё шкала РїСЂРёР±РѕСЂР° используется лучше.  [49]

Платина, Удельное электрическое сопротивление платины СЂ 0 1 РћРј – РјРј2 / Рј, Р° температурный коэффициент электрического сопротивления для: диапазона температур РѕС‚ 0 РґРѕ 100 равен Р° – – 3 9 – Р®-3 1 / град.  [50]

Влияние температуры РЅР° магнитоэлектрический вольтметр зависит РѕС‚ соотношения сопротивления катушки Рё резистора, Р° также РѕС‚ температурных коэффициентов электрического сопротивления РёС….  [51]

Для стабилизации работы моста РІ щирком интервале температур резистор RI изготовлен РёР· медной проволоки, так как температурный коэффициент электрического сопротивления меди примерно такой же, как Рё вольфрама.  [52]

Р�нтенсивность изменения электрического сопротивления РїСЂРё изменении температуры оценивается РїРѕ величине температурного коэффициента электрического сопротивления стекла – РўРљСЋРѕ – Температурный коэффициент электрического сопротивления называется точкой РўРљСЋРѕ Рё показывает, РґРѕ какой температуры надо нагреть стекло, чтобы его удельное электрическое сопротивление снизилось РґРѕ 108 РѕРј-СЃРј. Величина РўРљСЋРѕ зависит РѕС‚ состава стекла: чем меньше величина РўРљСЋРѕ, тем больше зависимость сопротивления стекла РѕС‚ температуры Рё хуже его электроизоляционные свойства. Особенно важно иметь большую величину РўРљСЋРѕ РЈ стекла, применяемого для изготовления ножек; это предотвращает электролиз Рё возможность пробоев Рё утечек между электродами, находящимися РїРѕРґ разными потенциалами.  [53]

Удельное сопротивление карборундовых нагревательных элементов находится РІ пределах 1000 – 2000 РѕРј-РјРј 2 / Рј, причем РёС… температурный коэффициент электрического сопротивления изменяется РІ зависимости РѕС‚ температуры, состава Рё структуры материала, Р° также РѕС‚ величины удельного сопротивления РІ холодном состоянии.  [55]

РљСЂРѕРјРµ кривых плавкости, РЅР° СЂРёСЃСѓРЅРєРµ приведены кривые, представляющие изменение твердости Рќ, электрического сопротивления СЂ Рё температурного коэффициента электрического сопротивления Р° РІ зависимости РѕС‚ состава. Р’СЃРµ три кривые указывают РЅР° плавное изменение упомянутых свойств СЃ составом.  [57]

Влияние изменения температуры РЅР° показания проволочных тензодатчиков связано СЃРѕ следующими его характеристиками, определяемыми РЅР° 1 РЎ: Р°) температурным коэффициентом электрического сопротивления – изменением сопротивления датчика РїСЂРё изменении его температуры; Р±) кажущимся напряжением, соответствующим изменению сопротивления наклеенного РЅР° деталь датчика РїСЂРё изменении температуры датчика Рё детали; РІ) термоэлектродвижущей силой, создаваемой РІ соединении концов РґРІСѓС… РїСЂРѕРІРѕРґРѕРІ РїСЂРё различной РёС… температуре.  [58]

Таким образом, нет возможности дать какое-то РѕРґРЅРѕ численное выражение для подсчета сопротивления силитовых нагревателей РїСЂРё различных температурах, так как температурный коэффициент электрического сопротивления, СЃ РѕРґРЅРѕР№ стороны, зависит РѕС‚ состава Рё структуры материала, весьма неоднородных Рё РѕС‚ значения удельного сопротивления РІ холодном состоянии, Р° СЃ РґСЂСѓРіРѕР№ – является сам очень сложной функцией температуры.  [59]

РћРј – Рј; / – длина РїСЂРѕРІРѕРґРЅРёРєР°, Рј; s – площадь сечения РїСЂРѕРІРѕРґРЅРёРєР°, Рј2; Р° – температурный коэффициент электрического сопротивления, для меди Рё алюминия равный 0 004; 6) – температура, РїСЂРё которой определяется сопротивление РїСЂРѕРІРѕРґРЅРёРєР°, РЎ.  [60]

Страницы:      1    2    3    4

Источник: https://www.ngpedia.ru/id115447p4.html

Зависимость сопротивления меди от температуры – Металлы, оборудование, инструкции

Удельное электрическое сопротивление платины. Сопротивление меди в зависимости от температуры

> Теория > Удельное сопротивление меди

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Сопротивление проводов

Выбор сечения кабеля

Сопротивление медного провода

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

U=I*R.

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Максимально допустимая длина кабеля данного сечения

Электросопротивление других металлов

Сопротивление тока: формула

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте.

В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода.

Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Источник: https://elquanta.ru/teoriya/udelnoe-soprotivlenie-medi.html

Что такое удельное сопротивление меди: величины, характеристики, значения

12.01.2018

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии.

С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества.

Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Понятие электрического сопротивления

Зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением, силой тока открыл немецкий физик Георг Симон Ом.

Источник: https://spb-metalloobrabotka.com/zavisimost-soprotivleniya-medi-ot-temperatury/

Зависимость сопротивления проводника от температуры. Сверхпроводимость – Класс!ная физика

Удельное электрическое сопротивление платины. Сопротивление меди в зависимости от температуры

«Физика – 10 класс»

Какую физическую величину называют сопротивлением
От чего и как зависит сопротивление металлического проводника?

Различные вещества имеют разные удельные сопротивления. Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной 0 °С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.

Температурный коэффициент сопротивления — величина, равная отношению относительного изменения сопротивления проводника к изменению его температуры.

Он характеризует зависимость сопротивления вещества от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К (на 1 °С).

Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов

У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них α < 0. Например, для 10%-ного раствора поваренной соли α = -0,02 К-1.

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения Вычисления приводят к следующему результату:

ρ = ρ0(1 + αt), или ρ = ρ0(1 + αΔТ),         (16.2)

где ΔТ — изменение абсолютной температуры.

Так как а мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 16.2).

Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения.

Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим.

Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10-5 К-1; удельное сопротивление Константина велико: ρ ≈ 10-6 Ом • м.

Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е.

в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10-3 К-1. Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления.

На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, — термисторы.

Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени.

Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.

Обычно в качестве основного рабочего элемента термометра сопротивления берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить.Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сверхпроводимость.

Сопротивление металлов уменьшается с уменьшением температуры. Что произойдёт при стремлении температуры к абсолютному нулю?

В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (рис. 16.3).

Явление падения до нуля сопротивления проводника при критической температуре называется сверхпроводимостью.

Открытие Камерлинг-Оннеса, за которое в 1913 г. ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже было открыто много других сверхпроводников.

Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах — начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ.

Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой.

Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла.

Например, серое олово имеет структуру алмаза с кубической кристаллической решёткой и является полупроводником, а белое олово обладает тетрагональной элементарной ячейкой и является серебристо-белым, мягким, пластичным металлом, способным при температуре, равной 3,72 К, переходить в сверхпроводящее состояние.

У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств, так что правильнее говорить не о сверхпроводящем состоянии, а об особом, наблюдаемом при низких температурах состоянии вещества.

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения тепла в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превысить которое, не нарушая сверхпроводящего состояния, нельзя.

Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскалённого ионизованного газа, движущегося в магнитном поле, в электрическую энергию.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учёными Дж. Бардиным, Л. Купером, Дж. Шриффером и советским учёным, академиком Н. Н. Боголюбовым.

В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).

Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа — гелия.

Физический механизм сверхпроводимости довольно сложен. Очень упрощённо его можно объяснить так: электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.

Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Электрический ток в различных средах – Физика, учебник для 10 класса – Класс!ная физика

Электрическая проводимость различных веществ. Электронная проводимость металлов — Зависимость сопротивления проводника от температуры. Сверхпроводимость — Электрический ток в полупроводниках.

Собственная и примесная проводимости — Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы — Электрический ток в вакууме. Электронно-лучевая трубка — Электрический ток в жидкостях. Закон электролиза — Электрический ток в газах.

Несамостоятельный и самостоятельный разряды — Плазма — Примеры решения задач по теме «Электрический ток в различных средах»

Источник: http://class-fizika.ru/10_a151.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.